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Abstract. We investigate the eikonal phase and its systematic corrections for the two
supersymmetric Coulomb partnersV1 andV2 derived by Amado. Apart from a constant shift
of −π for V1 and−2π for V2, the eikonal phase decay to the eikonal phase of the Coulomb
potential as 1/kb. For the potentialV2, which is phase equivalent to the Coulomb potential,
this result is only valid atb ' 0 and asymptotically; in the intermediate range, it constitutes a
lower limit.

1. Introduction

There is no general argument allowing us to conjecture that two phase equivalent potentials
should have the same eikonal phase, except for an asymptotically large incident energy. On
the other hand, for two supersymmetric (SS) partners differing by a single bound state, we
may expect a similar structure of the eikonal phase at least at large impact parameter.

In this respect, the Coulomb potential is of particular interest. It is well known in
this case that the eikonal approximation yields the exact result. The systematic corrections
introduced by Wallace [1] vanish at all orders for 1/r potentials. The expansion obtained
by Waxmanet al [2] has a similar property: beyond the eikonal phase (zero-order), odd
higher-order terms vanish, whereas even-order terms diverge at zero impact parameter but
decrease very rapidly with increasing incident energies and impact parameters. Consequently
it is interesting to study to what extent such properties are preserved in SS partners of the
Coulomb potential.

Note that both expansions use the WKB approximation as a dynamical model. The
Wallace expansion, on the other hand, includes also higher-order WKB terms. Thus this
last converges more rapidly towards the exact result. However, owing to its simplicity and
to the possibility of summing the series by estimating the WKB phase, we shall rely on the
expansion of Waxmannet al [2].

The purpose of the present work is to study the eikonal phase of the two SS potentials
V1 andV2 derived by Amado [3] for the Coulomb case following the method of Baye [4].
We shall show that much of the original eikonal phase expansion is preserved in the SS
Coulomb partners. Apart from a constant shift of−π and−2π for V1 andV2, respectively,
the origin of which has to be understood from the generalized Levinson theorem [5, 6], the
difference with respect to the Coulomb potential eikonal phase is proportional to 1/kb.

The results we obtain for the Coulomb potential are indeed valid for a large class of
potentials. This follows from quite general arguments developed by Khare and Sukhatme
[7] and Amadoet al [8]. These arguments will be briefly recalled in the conclusions.
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The paper is organized as follows. In section 2 we recall the expressions forV1 andV2

together with some of their properties. Their eikonal phase and the systematic expansion
of the correction terms are calculated in section 3. Conclusions are drawn in section 4.

2. Supersymmetric Coulomb partners

We consider a particle of massm moving in a Coulomb potentialV (r) = −e2/r. After
partial wave expansion, we recall that the radial Schrödinger equation reads[

− h̄
2

2m

d2

dr2
− e

2

r
+ h̄2

2m

`(`+ 1)

r2

]
ψ(r) = Eψ(r). (1)

To some extent, it is useful to introduce the dimensionless variable

x = me2

h̄2(`+ 1)
r

in which case (1) becomes[
− d2

dx2
− 2

(`+ 1)

x
+ `(`+ 1)

x2

]
ψ(x) = εψ(x) (2)

where

ε = 2

m

[
h̄(`+ 1)

e2

]2

E.

The two SS potentials derived by Amado [3] are written (i = 1, 2)

Vi(r) = −e
2

r
+1Vi(r) Vi(x) = −2

(`+ 1)

x
+1Vi(x). (3)

For the first case,i = 1, we have

1V1(r) = h̄
2

m

(`+ 1)

r2
1V1(x) = 2

(`+ 1)

x2
. (4)

The second case1V2 has a more complicated̀-dependence. We quote only itsx-
dependence:

1V2(x) = 2α(x)

[
−2(`+ 1)

x
+ α(x)+ 2

]
(5)

where

α(x) = 2`+ 3

x
[1F1(1, 2`+ 4; 2x)]−1 (6)

so that

1V2 = −2(2`+ 3)
d

dx
[x 1F1(1, 2`+ 4; 2x)]−1. (7)

Note thatV2 is phase equivalent to the Coulomb potential, whereasV1 is not. Since the
`-dependence ofV2 is far from being simple, we shall first discuss a few of its properties.

It is easy to show that1V2(x) > 0, and that furthermore

1V2(x) 6
2(2`+ 3)

x2
. (8)

By using (5) and (6), this inequality can be written

2`+ 3+ 2x 1F1 6 1F
2
1 + 2(`+ 1) 1F1 (9)
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Figure 1. Functionϕ(`, u) versusu for (a) ` = 0, 5, 10, 15 and 20 and (b) ` = 0, 50, 100, 150
and 200. The slope ofϕ(`, u) gets steeper as̀ increases. The asymptotic value ofϕ(∞, 1) is

also indicated. In (a) the full circles represent the fit toϕ(0, u) by the e−0.4u2
.

and it is proved order by order in the powers ofx. For ` = 0, the explicit expression for
1V2 , is given from (5) and (6) by

1V2(x, ` = 0) = 16x[e2x(x − 1)+ x + 1]

[e2x − 1− 2x − 2x2]2
. (10)

The higher angular momentum values lead to much more complicated expressions. In this
respect, a graphic representation of1V2 will be useful. We start from (7) and write

1V2x
2

2(2`+ 3)
= 1F1+ x 1F

′
1

(1F1)2
= N

D2
= ϕ(`, x) (11)

where1F
′
1 denotes the derivative with respect tox. By substitutingx = (`+ 2)u, we have

N = 1+ 2u+ 3u2 2`+ 4

2`+ 5
+ 4u3 (2`+ 4)2

(2`+ 5)(2`+ 6)
+ · · ·

D = 1+ u+ u2 2`+ 4

2`+ 5
+ u3 (2`+ 4)2

(2`+ 5)(2`+ 6)
+ · · · .

As shown in figures 1(a) and (b), as ` increasesϕ(`, u) approaches the step function
2(1− u). This can be inferred from the following arguments. In the expansion forN , for
06 u < 1, the generic term

nun−1(2`+ 4)n−2

(2`+ 5) . . . (2`+ 3+ n) (12)

is dominated bynun−1, which is also its limit for` → ∞. Thus,N → 1
(1−u)2 . Similarly

we haveD→ 1
1−u .

Consequently, foru < 1 as`→∞
ϕ(`, u) = 1 ϕ(`, u)′ = 0. (13)

For u > 1, we first make use of the Kummer transform

1F1(1, ν, νu) = eνu 1F1(ν − 1, ν,−νu) = eνu
ν − 1

(νu)(ν−1)
γ (ν − 1, νu) (14)
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whereν = 2`+ 4 andγ in the incompleteγ function [9] with the following limits

lim ν →∞ γ (ν − 1, νu)/0(ν − 1) = 1 u > 1

= 1
2 u = 1. (15)

Then it is easy to show that

ϕ(`, u) = (νu)(ν−1)[(νu)(ν−1) + eνuγ (ν − 1, νu)(2+ ν(u− 1))]

e2νu(ν − 1)γ 2(ν − 1, νu)
. (16)

For u > 1, we obtain

ϕ(`, u) ≈ (u− 1)

u

(νue−u)ν

0(ν)
. (17)

It shows thatϕ(`, u) tends only asymptotically to a step function. For finite` its exponential
behaviour aroundu = 1 is well illustrated by the curves of figures 1(a) and (b). Finally,
by settingu = 1 in (16), and letting̀ →∞, we getϕ(∞, 1) = 2/π . Again this value is
reached asymptotically (see figures 1(a) and (b)).

3. Eikonal expansion forV1 and V2

To study the eikonal phase and its corrections forV1 and V2, we use the systematic
series expansion obtained by Waxmannet al [2] from the WKB approximation taken as
a dynamical model, as stated in the introduction. We recall that the eikonal phase is
expressed as a function of the impact parameterb and its conjugate variablek, the incident
momentum. It yields

χ(b) = −
∞∑
n=0

mn+1

h̄2n+2k(n+ 1)!

{(
b

k

d

db
− d

dk

)
1

k

}n ∫ ∞
−∞

V n+1(r) dz. (18)

Here the differentiations with respect tob andk are carried out at fixedk andb, respectively.
Note also that for̀ -dependent potentials, the semiclassical substitution` = kb − 1

2 brings
no contribution from the productkb. Consequently thè dependence can be taken out of
the operator.

The nth-order term can be written as the Abel transform of the(n+ 1)th power of the
potential:

χn = −2k

(
m

h̄2k2

)n+1 1

b2n(n+ 1)!
(b2(1+ b∂b))n

∫ +∞
b

V (r)n+1r dr√
r2− b2

. (19)

For the bare Coulomb potential, the oddn terms vanish to all orders; the evenn contributions
up to the fourth order are given by (kb = q)

χ0 = 2y ln(q)+ constant

χ2 = −1

3
y3 1

q2

χ4 = 1

10
y5 1

q4

(20)
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where use is made ofy = m

h̄2
e2

k
. The very simple structure ofV1 leads to a compact

expression:

χ(1)n = −
(−2)n

√
π

(n+ 1)!

n+1∑
p=0

C
p

n+1

0(n− p/2+ 1
2)

0(n+ 1− p/2)

×
[ n∏
j=1

(
j − p

2

) ]
(−y)p(`+ 1)n+1−pq−2n−1+p (21)

which is valid forn > 1.
Here the coefficientsCpn+1 are the binomial coefficients. Note that for powersn > 1,

χ(1)n involves powers of1V1 and mixed contributions including the Coulomb potential.
The corrections toχn due to1V1 are listed below up ton = 2. We get successively

1(χ
(1)
0 ) = −π

(
1+ 1

2q

)
1(χ

(1)
0 )+1(χ(1)1 ) = −π

(
1− 1

2q2
− 1

8q3

)
− y

(
2

q
+ 1

q2

)
1(χ

(1)
0 )+1(χ(1)1 )+1(χ(1)2 ) = −π

(
1+ 5

8q3
+ 3

8q4
+ 1

16q5

)
−y

(
2

q
− 1

q2
− 2

q3
− 1

2q4

)
.

(22)

This result establishes clearly that besides a shift of−π , the eikonal phase ofV1 differs
from the original Coulomb phase by a contribution which vanishes only asymptotically.
This last diverges atb = 0. Among the higher-order terms, we distinguish two types of
contributions. Those arising from1V1 only show the interesting property of a recurrent
cancellation. To be explicit, the−π/q of 1χ(1)0 is cancelled by the lowest contribution to
1χ

(1)
1 , and such a cancellation propagates from one order to the next, so that the partial

summation to thenth order diverges at least like 1/qn+1.
The terms proportional to powers ofy involve the Coulomb potential. They decay

faster as the energy is increasing due to the extra 1/k factor iny. Even powers ofy do not
appear for the very same reason as for the Coulomb potential. The recurrent cancellation
does not occur for these terms.

For the sake of comparison, it is useful to calculate the WKB phase shift forV1. By
using standard techniques we end up with

δWKB = −π
2
+ q arctan

y

q
− (q + 1) arctan

y

q + 1
+ y

2
log

q2+ y2

(1+ q)2+ y2
+ δcoul (23)

where

δcoul = y ln(q)+
∑

n even,>2

(−)n/2 1

n(n+ 1)

yn+1

qn
+ constant. (24)

Remembering that

χ(b) = 2δ(`)

we can check this result against the first few terms of (22). If we only keep the contribution
from 1V1, settingy = 0, we obtain a shift of−π/2. No trace of the 1/q divergences
at b = 0 remains, which indicates that the convergence domain of the series expansion
(18) is given byb > k−1. The expressions (22) and (23) show also that asq → ∞,
δWKB →−π/2.
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The complicated̀ - and r-dependences of the potentialV2 prevent us from giving a
compact expression for the eikonal phase. Consequently we shall present and discuss a
couple of limits.

From the inequality (8), it is straightforward to show that

1χ
(2)
0 > −2π − 2π

kb
. (25)

This is not enough, however, to ensure that asymptoticallyχ
(2)
0 reduces to a 2π shift proving

the phase equivalence ofV2. Numerical estimates ofV2 indicate that asb ' 0, we have

1V2(r) ≈ (2`+ 3)h̄2

m

1

r2
e−ω

2r2
(26)

with ω ' 0.1me
2

h̄2 . This leads to

1χ
(2)
0 ≈ −2π

[
1+ 1

kb

]
(1− φ(ωb)). (27)

The estimate of1χ(2)1 shows that the recurrent cancellation observed for1V1 does not
occur for1V2. As b → ∞, the discussion of the preceeding section together with the
shape ofϕ(`, u) displayed in figures 1(a) and (b) suggest that

1V2(r) ≈ (2`+ 3)h̄2

m

1

r2
2(r0− r) (28)

wherer0 actually depends oǹ: r0 = (`+1)(`+2) h̄
2

me2 . A straightforward calculation leads
to

1χ
(2)
0 ≈ −4

(kb + 1)

kb
arccos

b

r0
. (29)

As b
r0
→ 0 we again obtain the same estimate as above.

In order to put our estimate of1(χ(2)0 ) on firmer ground, let us start again from the
general expression

1(χ
(2)
0 ) = −2

m

h̄2k

∫ +∞
b

1V2(r)r√
r2− b2

dr (30)

or equivalently

1(χ
(2)
0 ) = −4`+ 6

kb

∫ +∞
1

G(r)
1

r
√
r2− 1

dr (31)

where

G(r) = [x 1F1(1, 2`+ 4, 2x)]′

1F1(1, 2`+ 4, 2x)2

∣∣∣∣
x=Zr

Z = m

h̄2

e2

k

kb

kb + 1
2

.

(32)

When the variableZ tends to zero, which happens for infinite values ofk or for vanishing
values ofkb, the functionG(r) tends toG(0) = 1. The dominated convergence theorem
states that

1(χ
(2)
0 ) 7→ −2π

kb + 1

kb
' −2π

(
1+ 1

kb

)
. (33)
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Figure 2. Relative differenceE(b) (equation (34)) between the asymptotic and exact value of
χ
(2)
0 (b) (see text). The full and broken curves correspond to the ‘proton’ and the ‘4He’ cases,

respectively. The4He curve has been divided by 4.

As for the case ofV1, it would be very desirable to give the WKB value of the phase
shift. This can be achieved analytically only in the asymptotic domain asb→∞. This is,
however, sufficient for the present discussion. Following standard techniques as previously
we find1(δ`) = −π . Again this proves, at least asymptotically, the phase equivalence of
V2.

Finally, in order to check the behaviour ofχ(2)0 (b) over intermediate values ofb,
we display in figure 2 the relative difference between the exact valueχ

(2)
0 (b), obtained

numerically, and the approximate (asymptotic) valueχ(2)a (b) = −2π(kb+1
kb
), namely

E(b) = −2π(kb + 1)− kbχ(2)0 (b)

−2π(kb + 1)
. (34)

The result depends on the scale parameterme2

h̄2 . We shall consider two examples taken from

nuclear physics. The length unit is the fm, and we fixedk = 1 fm−1. The calculations have
been performed forme

2

h̄2 = 0.0347 fm−1 and 0.2776 fm−1; it corresponds to the scattering of
a proton and a4He nucleus by a Coulomb potential fixed in space (see equation (1)). The
general behaviour ofE(b) is to exhibit a maximum at low values of the impact parameter.
The decay towards the asymptotic value at largeb is quite slow.

We findE(b) > 0, which confirms thatχ(2)a (b) is a lower limit, as expected from (8).

4. Conclusions

In this work we have addressed the question of the eikonal phase of SS partners of the
Coulomb potential. We have investigated the two casesV1 andV2 derived by Amado [3],
V2 being phase equivalent to the Coulomb potential by construction. We find that apart
from a constant shift of−π for V1 and−2π for V2, respectively, the eikonal phase reaches
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asymptotically the original Coulomb eikonal phase. The rate of convergence to the Coulomb
result is proportional to 1/kb. It is interesting to note that asymptotically the eikonal phase
reaches the results predicted by the generalized Levinson theorem [5, 6].

In the case ofV1, we observe an interesting recurrent cancellation among the successive
contributions so that summing the eikonal series expansion up to ordern for 1V1 yields in
the leading order a divergence proportional to(1/kb)n. This result brings a limitation to
the convergence domain of the series expansion (18).

Although derived for the specific case of the Coulomb potential, our findings are in fact
valid for a very large class of potentials. It has been shown by Khare and Sukhatme [7] that
a SS partner is generated by a one-parameter family of potentials all being phase equivalent.
It is then obvious that our results extend to any potential belonging to the ‘Coulomb’ family.

Futhermore, according to the work of Baye [4], the difference between the original
potential and its SS partners presents a general feature, namely a 1/r2 behaviour near the
origin and a rapid decay asr increases. The same argument has been given by Amado
et al [8], who showed that the SS partners behave like(` + 1)(` + 2)/r2 near the origin,
irrespective of the shape of the original potential and its number of bound states. This
ensures a common behaviour of the eikonal phase asb → 0. At the other extreme, as
b→∞, it is dominated by the centrifugal barrier for any finite-range potential.
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